
COP: Compiler Optimizations to Reduce Memory Stalls for Network
Pipelines Written in P4

Shailja Pandey Ankit Bhardwaj Anmol Panda Sorav Bansal
{csz168117, ankitbhr.cstaff, ird11569, sbansal}@cse.iitd.ac.in

Indian Institute of Technology Delhi

1 Introduction

Software-based packet processing on general-purpose
hardware is ubiquitous in virtualized data centers.
Concurrently, novel high-level domain-specific lan-
guages (DSLs), for specifying modern packet processing
pipeline functionality, have been proposed (e.g., P4 [2]).
While these DSLs separate protocol-specification from
switch implementation, and thus significantly improve
productivity, they rely on an optimizing compiler to au-
tomatically convert the protocol-specification to a high
performance switch implementation. We report our ex-
periences with adding an optimizer to the P4C compiler
[3] with a focus on reducing memory stalls. Our com-
piler translates a high-level P4 program to a lower-level
C-based implementation that links with the DPDK in-
frastructure [1], and eventually gets executed on a multi-
socket x86 machine.

Figure 1 shows the abstract forwarding model in P4
[2]. Typical packet-processing logic involves packet
parsing (convert a packet to an efficiently accessible
meta-data structure), and de-parsing (serialize the po-
tentially modified meta-data into a packet), and a set of
match-action tables. The match-action tables define rules
to perform packet classification and determine the con-
trol flow. In a typical data-center networking, the num-
ber of rules in these tables is quite large making the look-
up operations memory intensive in nature. The disparity
in speeds of CPU and main memory causes stalls in the
pipeline during look-up operations. Hence, optimizing
the look-up operations reduces the per-packet CPU cy-
cles and increases the throughput. In this work, we aim
to 1© reduce the number of look-up operations per packet
and 2© reduce the stall time per look-up operation. To
reduce the number of look-up operations, we add an op-
timization pass in the compiler which selectively joins
multiple match-action tables and performs lookup into
the resulting table. Furthermore, scheduling and soft-

∗Shailja Pandey is a student author

ware prefetching help to reduce stall time per lookup by
exploiting memory-level parallelism offered by the un-
derlying architecture.

Figure 1: P4 forwarding model

2 Implementation

P4 programs can be represented in an accompanying
high-level intermediate representation (HLIR), which fa-
cilitates easy analysis and transformation. Our compiler
converts an HLIR program to C code and during this con-
version, we apply our optimizations, implemented as two
compiler passes.
TableCombine pass: This pass coalesces multiple ta-
bles connected in series into one table in the HLIR syn-
tax. The joining of match-action tables is affected by de-
pendencies between tables, type of lookup (exact, LPM,
ternary, etc) and size of tables. The size of joined ta-
ble is restricted by an upper limit for number of table
entries, determined by the underlying data-structure. As
part of this work, we join tables containing exact match
look-ups and in future we plan to work on other types
of lookups. The set of actions for the joined table is the
union of all actions from the component tables. This op-
timization depends on the system’s memory capacity and
therefore, can’t be applied for very large tables.
Scheduling and Software Prefetching: Most modern
hardware support multiple in-flight memory requests si-
multaneously with the help of MSHRs(10 for our sys-
tem). If the system exploits full MLP, the average mem-
ory access time is (one memory access time + δ )/10 i.e.



average memory access time is reduced by a factor of al-
most 10. To reduce the stall time even further, software
prefetching can be used.

Instruction scheduler tries to issue independent in-
structions from reorder buffer. Generally, instructions
from different packets are mutually independent. There-
fore, processing multiple packets simultaneously in-
creases the opportunity for the scheduler to issue inde-
pendent instructions. Hence, COP transforms the code
such that multiple packets pass through each stage to-
gether in the network pipeline. This compiler pass sched-
ules the instructions, and adds prefetching instructions to
ensure higher utilization of both CPU and memory. As
we target lookup operations, COP focuses on scheduling
memory related instructions to reduce average memory
access time for each lookup.

3 Experiment Results

We use two Dell Poweredge R430 Rack Server, based
on Haswell architecture. Each server has two dual
port NICs, one Intel XL710(2x40 GbE) and one In-
tel x540(2x10 GbE), adding to a total capacity of
100GbE. We run applications (L2FWD, IPV4, IPV6,
NDN, CRYPTO, and L2L3ACL) on one server and
DPDK Pktgen traffic generator on the other. All the re-
ported results are for 1 core and we expect linear scaling
with multiple cores.

Figure 2: Effect of scheduling and prefetching

Effect of Scheduling and Prefetching: In figure 2,
the “+Scheduling” results represent the case when
COP schedules the instructions corresponding to a batch
of packets to exploit memory level parallelism. The
“+Prefetching” results represent the case when we
have done scheduling as well as software prefetching to
prefetch the data into cache memory. We obtain a to-
tal gain of 138% for L2FWD, 64% for IPv4, 280% for
IPv6, 121% for NDN, 2% for CRYPTO and 135% for
L2L3ACL application. As CRYPTO does not have any
look-up operation, we do not see a gain whereas for all
other applications, we obtain significant gain in perfor-
mance.

Figure 3: L2L3-ACL application control flow

Effect of TableCombine: As shown in figure 3, L2L3-
ACL application[4] has seven table look-up operations
with one probable diversion in the control flow. We per-
formed the experiment with three different table sizes
and we compare our results with individual tables gen-
erated by vanilla P4C[3].

#Entries P4C Scheduling+Prefetching +Join
Min 2.9 4.8 7.4

Medium 2.7 4.8 6.9
Max 2.4 4.2 6.2

Table 1: Effect of optimizations on throughput(MPPS)

As table {4} contains a diversion and table {6} con-
tains a ternary lookup, they cannot be joined with other
tables. Consequently, there are only four table look-
ups after joining {1,2,3}, {4}, {5,7}, {6} tables as op-
posed to seven in base case. Table 1 shows resulting
throughput after applying TableCombine, Scheduling
and Prefetching passes. As the size of joined table
is bigger than that of individual tables, scheduling opti-
mization adds to the benefit obtained due to MLP.

References

[1] Intel Data Plane Development Kit. http://dpdk.

org/.

[2] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M.,
MCKEOWN, N., REXFORD, J., SCHLESINGER,
C., TALAYCO, D., VAHDAT, A., VARGHESE, G.,
AND WALKER, D. P4: Programming protocol-
independent packet processors. SIGCOMM Comput.
Commun. Rev. 44, 3 (July 2014), 87–95.

[3] LAKI, S., HORPÁCSI, D., VÖRÖS, P., KITLEI,
R., LESKÓ, D., AND TEJFEL, M. High speed
packet forwarding compiled from protocol indepen-
dent data plane specifications. In Proceedings of the
2016 ACM SIGCOMM Conference (New York, NY,
USA, 2016), SIGCOMM ’16, ACM, pp. 629–630.

[4] SHAHBAZ, M., CHOI, S., PFAFF, B., KIM, C.,
FEAMSTER, N., MCKEOWN, N., AND REXFORD,
J. Pisces: A programmable, protocol-independent
software switch. In Proceedings of the 2016
ACM SIGCOMM Conference (New York, NY, USA,
2016), SIGCOMM ’16, ACM, pp. 525–538.

2

http://dpdk.org/
http://dpdk.org/

	Introduction
	Implementation
	Experiment Results

