Background	Objectives and Scope	Experiments and Results	Analysis	Conclusion	Summary
		00			

A Comparative Study of GPUVerify and GKLEE

Anmol Panda¹ Philipp Rümmer² Neena Goveas¹

¹Department of Computer Science and Information Systems BITS Pilani K K Birla Goa Campus, India

> ²Department of Information Technology Uppsala University, Sweden

4th International Conference on Parallel and Distributed Grid Computing, 2016 JUIT, Waknaghat, India

Background	Objectives and Scope	Experiments and Results	Analysis	Conclusion	Summary
		00			

Outline

- 1 Background
 - Challeneges in GPU Computing
 - Verification tools: GPUVerify and GKLEE
- 2 Objectives and Scope
- 3 Experiments and Results
 - Benchmarks
 - Experimental Setup
 - Results

4 Analysis

- Differences in Bugs Reported
- Difference in Runtime

5 Conclusion

Anmol Panda, Philipp Rümmer, Neena Goveas

Background ○	Objectives and Scope	Experiments and Results 0 00	Analysis 0 00	Conclusion	
Challeneges in GF	PU Computing				

Background

CUDA, Opencl, OpenAMP

Anmol Panda, Philipp Rümmer, Neena Goveas

BITS Pilani K K Birla Goa Campus, Uppsala University

э

э

Background ○	Objectives and Scope	Experiments and Results 0 00	Analysis 0 00	Conclusion	
Challeneges in GF	PU Computing				

- CUDA, Opencl, OpenAMP
- Lack of backward compatibility
- Absence of dedicated cache memory
- Difficult to optimize performance
- Making efficient software requires significant time and resources

Background ○	Objectives and Scope	Experiments and Results 0 00	Analysis 0 00	Conclusion	
Challeneges in GP	PU Computing				

- CUDA, Opencl, OpenAMP
- Lack of backward compatibility
- Absence of dedicated cache memory
- Difficult to optimize performance
- Making efficient software requires significant time and resources
- Bugs like Data races and diverging barriers

Background ○ ●	Objectives and Scope	Experiments and Results 0 00	Analysis 0 00	Conclusion	
Verification tools:	GPUVerify and GKLEE				

Background

Need for verification

Anmol Panda, Philipp Rümmer, Neena Goveas

・日・ ・ ヨ・ ・ BITS Pilani K K Birla Goa Campus, Uppsala University

э

э

Background ○ ●	Objectives and Scope	Experiments and Results 0 00	Analysis 0 00	Conclusion	
Verification tools:	GPUVerify and GKLEE				

- Need for verification
- GPUVerify: Developed by Alastair Donaldson from Imperial College London and Shaz Qadeer from Microsoft as a portable verifier of Opencl and CUDA kernels

Anmol Panda, Philipp Rümmer, Neena Goveas

Background ○ ●	Objectives and Scope	Experiments and Results 0 0 00	Analysis 0 00	Conclusion	
Verification tools:	GPUVerify and GKLEE				

- Need for verification
- GPUVerify: Developed by Alastair Donaldson from Imperial College London and Shaz Qadeer from Microsoft as a portable verifier of Opencl and CUDA kernels
- GKLEE: Developed by the Gauss Research group as a concolic (concrete and symbolic) verifier-cum-analyzer of CUDA programs for GPUs

Background	Objectives and Scope	Experiments and Results	Analysis	Conclusion	Summary
		00			

Objectives and Scope

- Objectives
 - Compare GPUVerify and GKLEE for factors like bugs reported, execution time and system portability
 - Understand their usability, learn-ability and and preferred usage

Anmol Panda, Philipp Rümmer, Neena Goveas

Background	Objectives and Scope	Experiments and Results	Analysis	Conclusion	Summary
		00			

Objectives and Scope

- Objectives
 - Compare GPUVerify and GKLEE for factors like bugs reported, execution time and system portability
 - Understand their usability, learn-ability and and preferred usage
- Scope
 - Within the scope: Performance aspects of the tools
 - Beyond the scope: Theoretical aspects of these tools

Anmol Panda, Philipp Rümmer, Neena Goveas

Background 0 0	Objectives and Scope	Experiments and Results ● ○ ○○	Analysis 0 00	Conclusion	
Benchmarks					

Experiments and Results

- Number of benchmarks: 26
- Number of OpenCl benchmarks: 6
- Number of CUDA becnhmarks: 20
- Source of benchmarks: Open source Github repositories and GKLEE test samples
- Type of benchmarks: Image processing, data mining, mathematical operations, etc.
- Test conducted: GPUVerify 6 Opencl, 14 CUDA, GKLEE - 16 CUDA

Background 0 0	Objectives and Scope	Experiments and Results ○ ○○	Analysis 0 00	Conclusion	
Europeins and all Cas					

Experimental Setup

Experiments and Results

Sr	Property	Type / Value
No		
1	CPU	Intel ®Core TM i7-3770
2	Clock Speed	3.40 GHz
3	Number of Cores	8
4	Graphics	Intel RIvyBridge Desktop
5	Operating System	Ubuntu 14.04 LTS
6	OS Type	64 bit
7	System Memory	8 GB
8	Disk Size	483.8 GB

Table: System Specifications

Anmol Panda, Philipp Rümmer, Neena Goveas

BITS Pilani K K Birla Goa Campus, Uppsala University

Background	Objectives and Scope	Experiments and Results	Analysis	Conclusion	Summary
		0			
Results					

Experiments and Results

ld	Benchmark	Data Race	Barrier Diver- gence	Time (sec- onds)
6	N-Body Computation	2	2	39.7
7	PI Estimation	3	0	3.9
8	MatrixMultiply2	8	0	6.7
9	Image Blur	0	0	0.7
10	Pairwise sums timed	4	0	1.6
11	GPU kmeans	8	0	4.5
12	Vector Sums	1	0	1.2
13	Matmul	0	0	1.4
14	Pairwise sums	4	0	1.7
15	Cube	1	0	1.1
16	Square	1	0	1.1
17	Deadlock0	3	1	1.4
18	Deadlock2	0	1	1.3
19	Seive1	2	0	1.5

Table: GPUVerify results time for CUDA benchmarks

Anmol Panda, Philipp Rümmer, Neena Goveas

Background 0 0	Objectives and Scope	Experiments and Results ○ ○	Analysis 0 00	Conclusion	
Results					

ld	Benchmarks	Errors Performance Bugs		Time (sec- onds)			
		DR	BD	BCR	WDR	MCR	
		#	#	%	%	%	
10	Pairwise-sums timed	1	0	0	2, 45	100	1m 21.9s
11	GPU kmeans	1	0	0	0, 25	96,	1m
						75	33.8s
12	Vector Sums	1	0	0	0	100	0m 0.9s
13	Matmul	1	0	0	50	100	0m 3.7s
14	Pairwise sums	1	0	0	50	100	0m 0.5s
15	Cube	1	0	0	0	100	0m 5.2s
16	Square	1	0	0	0	100	0m 3.4s
17	Deadlock0	0	1	NA	NA	NA	0m 1.4s
18	Deadlock2	0	1	0	50	100	0m 2.8s
19	Seive1	1	0	0	100	100	0m 6.3s
21	Interblock race	1	0	0	0	100	0m 0.5s
23	Bank Conflict	0	0	100	0	100	0m 1.4s
26	SumMatrix-2D grid 2D block	0	0	0	100	100	1m15.8s

Table: GKLEE results for CUDS benchmarks

Anmol Panda, Philipp Rümmer, Neena Goveas

・日・ ・ヨ・・ BITS Pilani K K Birla Goa Campus, Uppsala University

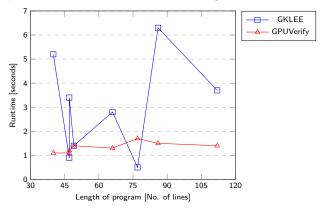
3

э

Background 0 0	Objectives and Scope	Experiments and Results 0 00	Analysis ● ○○	Conclusion	
Differences in Bu	igs Reported				

Analysis

Id	Benchmark	Number o Races det		Remarks
		GPU Verify	GKLEE	
10	Pairwise sums timed	4	1	GKLEE exits after first data race is detected
11	GPU Kmeans	8	1	GKLEE exits after first data race is detected
13	Matmul	0	1	GKLEE reports a benign data race
14	Pairwise sums	4	1	GKLEE exits after first data race is detected
17	Deadlock0	3	0	GKLEE exits after reporting a potential deadlock (barrier diver- gence)
18	Deadlock2	0	0	Neither tool reports any data races
19	Seive1	2	1	GKLEE exits after first data race is detected

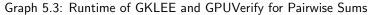

Table: Comparative analysis of data races reported by GPUVerify and GKLEE

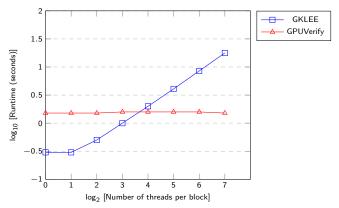
Anmol Panda, Philipp Rümmer, Neena Goveas

Background 0 0	Objectives and Scope	Experiments and Results 0 00	Analysis ○ ●○	Conclusion	
Difference in Ru	ntime				

Analysis

Graph 5.2: Variation in runtime with length of code




Anmol Panda, Philipp Rümmer, Neena Goveas

BITS Pilani K K Birla Goa Campus, Uppsala University

Background 0 0	Objectives and Scope	Experiments and Results 0 00	Analysis ○ ○●	Conclusion	
Difference in Ru	ntime				

Analysis

Anmol Panda, Philipp Rümmer, Neena Goveas

BITS Pilani K K Birla Goa Campus, Uppsala University

Background	Objectives and Scope	Experiments and Results	Analysis	Conclusion	Summary
		00			

- Scope of the software
- Portability, learn-ability and usability issues
- Execution time
- Recommended use

Anmol Panda, Philipp Rümmer, Neena Goveas

Background 0 0	Objectives and Scope	Experiments and Results 0 0 00	Analysis 0 00	Conclusion	Summary

- GPUVerify and GKLEE provide much needed and useful mechanisms to verify GPU software
- GPUVerify takes less time and is more portable
- GKLEE provides detailed results and reports performance pitfalls

Future work

- False positive and negatives
- Qualitative classification of benchmarks

Anmol Panda, Philipp Rümmer, Neena Goveas