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Abstract—Use of Graphics Processing Unit (GPU) software
is increasing due to the need for data intensive operations
and availability of GPUs. This has led to a need for effective
GPU software verification tools. These tools have to satisfy
requirements such as accuracy, reliability and ease of use.
In this work, we have considered two such tools: GPU Verify
and GKLEE. Our objectives were to learn about the common
challenges developers faced in GPU programming, to understand
the specific bugs that these two tools report and compare their
scope and scalability aspects. We have also considered usability
and learnability aspects. In order to test the software, twenty-six
benchmarks were selected from open-source applications. These
benchmarks were then verified using the tools and the results
documented and analysed. The conclusions have been included
in the final section.
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I. INTRODUCTION

Given the rapid developments in multi-core processor
technology, GPUs now play a vital role in various types of
applications that rely on these chips for parallel computation
[11, 121, [3], [4], [5], [6], [7]. GPU computing platforms such
as OpenCL, CUDA and OpenAMP have made a disruptive
impact on the way data-intensive software are conceptualised
and implemented. However, this dependence on GPUs raises
important questions regarding accuracy and verifiability of
such software. GPU kernels are prone to bugs such as data
races, incorrectly placed barriers and inefficient memory ac-
cesses. Such errors, if unchecked, can render the system in
an undefined and unpredictable state [8], [9], [10]. In order to
recover from such a state, a system reboot may be required.
Since GPUs are now used in critical applications such as
defence systems, aerospace systems and medical equipment,
the possibility of a system crash cannot be tolerated.

Consequently, tools such as GPUVerify [9] and GKLEE
[10] have been developed. These tools vary in their target
applications, the scope of errors they report and their approach
and depth of testing. These tools have to identify various bugs
such as data races and barrier divergence. In addition dynamic
aspects such as thread divergence within a warp, inefficient
memory accesses and bank conflicts are reported by GKLEE.

In this work, we have studied some of the common errors
that can occur in GPU software. We analysed the tools,
GPUVerity and GKLEE, by studying their performance on
carefully selected OpenCL and CUDA benchmark kernels. The
results of these tests have enabled us to comparatively analyse
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these tools not just for the accuracy of their claims, but also
their robustness, versatility and usability aspects.

A. Scope and Objectives

The objectives of the research were to analyse these soft-
ware for their similarities and differences as well as benefits
and disadvantages of using each. The scope of the work was
limited to the usage and benefits of deploying the said tools
with a specific focus on the types of bugs and performance
issues, if any, that the tools report. Moreover, we also looked
at factors such as system requirements, run-times and ease
with which results can be interpreted by developers. Lastly,
we considered the usability and learn-ability aspects of the
tools as well.

In the subsequent sections, we have described the various
stages of this work. Firstly, section two outlines the broad chal-
lenges in GPU computing paradigm. Section three documents
the experimental setup and process while section four lists the
results and analysis of those experiments. Finally, section five
explains the conclusions of our research and the potential for
future work in this area.

B. Related works

The multi-domain utility of massively parallel GPUs has
motivated researchers to address the need for verifying GPU
software written for myriad sectors. Betts et al [9] describe
GPUpverify, the background behind its need and development,
the mathematical model used for verification and the perfor-
mance of the tool. Ethel Bardsley and Alastair Donaldson
[11] explore the practical impact of design decisions, namely
coarse-grained thread synchronization within the same warp
on one hand and atomic operations on the other. Gudong Li
and Ganesh Gopalakrishnan [10] describe the logical model
of GKLEE, its capacity to detect bugs and performance issues
and its performance during verification of select commercial
SDKSs. T Wei-Fan Chiang et al [12] describe a new method to
detect bugs utilising both barriers and atomics.

II. CHALLENGES IN GPU COMPUTING

Several major challenges emerge in designing and pro-
gramming software that can fully harness the computing power
of these GPUs.

Firstly, the GPU programming model is parallel in na-
ture. Inefficient use of parallel APIs by novice programmers
[13] [14] can degrade performance of General Purpose GPU
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(GPGPU) applications and lack of backward and forward API
compatibility can make them non-viable in the long term [15].
Also, not all problems have massively parallel algorithms [16].
Secondly, in the absence of a dedicated cache memory for
each processor [13], non-coalesced memory accesses [17], data
transfers between multiple layers of memory and deploying
too few or too many threads adversely impact performance.
Moreover, GPU computing is yet to achieve application porta-
bility with other parallel domains such as multi-core CPUs
and stream processors [15]. Thirdly, optimizing performance
for GPUs is a difficult process in the absence of sophisticated
control logic for branch and loop prediction. Since data transfer
remains the slowest part of the process [18], GPGPU applica-
tions must be profiled to locate performance bottlenecks and
quantify their overhead. Using too many third party libraries
to optimize code can make the application less modular, less
portable and difficult to debug [13]. In addition, minor changes
in the program can cause performance cliffs [15]. Fourthly,
achieving stated performance requires significant time and
effort. In the CUDA framework, many applications may only
achieve about half the expected performance expected from
the CUDA application and few would exceed 10 percent of
their peak performance as data transfers across memory levels
are not automated in the compiler [19]. Correcting such flaws
requires significant investment in time and resources on a
scale that only well-funded research organisations can deliver
[19] [20] [21]. Lastly, not all applications require the degree
of speedup that a GPU can deliver while others may need
much time and effort to develop and market, thus reducing the
pool of potential developers. These factors adversely impact
the popularity of GPU programming as choice for research,
especially among students.

A. Common bugs in GPU kernels

While the issues mentioned above broadly cover the current
challenges faced by programmers in the GPU computing
domain, we have narrowed our focus to the prevalence of bugs
in GPU kernel code. In this work, we have considered certain
programming and some performance bugs that can occur in
GPU software. These include data races and incorrectly placed
barriers.

1) Data Race: A data race is a common bug found in
GPU kernels. It occurs when two or more threads try to
simultaneously access data from the same memory location
and at least one of them is writing to it. In such a scenario, the
outcome of the memory accesses is undefined. Consequently,
the state of the application and by extension, that of the system
is unpredictable.

Listing 1. Data Race example
__global__
void addToNextKernel(int *a,int b,
int i = threadldx.x +
blockDim .xxblockIdx .x;
if( i <n)
ali+l1] = a[i] + b;

int n){

Listing 1 is a common example of a data race [22].
Consider threads 7; and 7, with @ = 1 and ¢ = 2 respectively.
When 7 executes, it accesses two data items of array a[ ],

i.e it reads a[l1] and writes to a[2]. Similarly, when 75 runs
it reads from a[2] and writes to a[3]. Therefore, both threads
access the same data location a[2] and one of them is writing
to it. This condition is referred to as a data race and the result
is unpredictable. In the example above, all threads 71 to 7,1
have data races. In general, some data races may be actual,
others could be benign while some occur only for certain
values of configuration parameters.

2) Barrier Divergence: The next issue that we con-
sider is barrier divergence. Barriers are introduced to syn-
chronise threads to prevent bugs such as data races. The
__syncthreads() and barrier() function calls are used in
CUDA and OpenCL respectively to synchronise threads. How-
ever, often these barriers are placed incorrectly, thus leaving
open the possibility that some thread skips the barrier. One
such example is listed below. The kernel takes an array of
integers as input and adds the even integers and subtracts all
the odd ones. It returns the resulting sum in the variable sum.

Listing 2.  OpenCL example of Barrier Divergence and Data Race
__kernel void addEvenSubtractOdd
(__global int xnumbers,
int n, __global int =sum){

int res=0;

int i, temp;

i = get_local_id (0);

if (i<n){

temp = numbers[i];

if (temp%2 == 0){

res += temp;

barrier (CLK_GLOBAL _MEM_FENCE ) ;
telse{

res —= temp;

barrier (CLK_GLOBAL _MEM_FENCE ) ;

*sSum = T1€Ss ;

A common instance of barrier divergence occurs when
barriers are within the scope of conditional statements. In such
a case, if some threads skip the scope of the condition while
others wait at the barrier inside the scope, the waiting threads
will never be released, thus leaving the system in an unstable
and unpredictable state. An instance of such a case is shown in
Listing 2. The threads that operate on even data items wait at
the first barrier while the odd ones wait at the second barrier.
In such a scenario, the output is undefined with the possibility
of unintended side-effects '. Therefore, although barriers are
used to synchronize threads across different parallel computing
domains, the problem becomes particularly acute for GPU
programming due to the reasons mentioned above.

Among the tools we have chosen for analysis, GPU Verify
reports both data races and barrier divergences. GKLEE, on
the other hand, reports not just these bugs, but also locates any
bank conflicts, warp divergences and non-coalesced memory
accesses through a concolic analysis of the kernel.

I'Section 12.4, ”Synchronising Divergent Threads in a Group”, CUDA Toolit
Documentation [8]
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III. EXPERIMENTS
A. Benchmarks

We chose twenty-six benchmarks [23], [24], [25], [26],
[27], [28], [29], [30], [31] from open source applications
available on GitHub. These applications cover a wide variety
of domains such as image processing, data mining tools,
mathematical operations, etc. Some benchmarks were chosen
from the list of examples provided by the developers of
GKLEE [10]. This enabled us to understand the behaviour of
GKLEE in greater detail.

B. Experimental Setup

The benchmarks were then tested for bugs using the chosen
verification tools, GPUVerify and GKLEE. The experiments
were conducted on a system detailed in Table 1.

H Sr No [ Property [ Type / Value H
1 CPU Intel ®Core ™ i7-3770
2 Clock Speed 3.40 GHz
3 Number of Cores 8
4 Graphics Intel ®IvyBridge Desktop
5 Operating System Ubuntu 14.04 LTS
6 OS Type 64 bit
7 System Memory 8 GB
8 Disk Size 483.8 GB
TABLE L. SYSTEM SPECIFICATIONS
C. Results

In this section, we have discussed the results of our
experiments. We have tabulated the number of potential bugs
reported and the execution time. Tables II and III show the
results for GPU Verify with OpenCL and CUDA benchmarks
respectively. Table IV lists the results of tests conducted
with GKLEE. Table V includes a comparative analysis of
GPU Verify and GKLEE.

Id | Benchmark # DR #BD° | Time
(secs)
1 Transpose kernel 4 0 1.7s
2 Matrix Mul 2 0 1.8s
3 Matix vector Multiply 0 0 1.6s
4 Harlan Nested Kernels 5 0 2.5s
5 Loop4 1 0 3.4s
24 Loop4a Err ¥ Err 17.8s
TABLE II. RESULTS: OPENCL BENCHMARKS VERIFIED USING

GPUVERIFY

In each of the cases, except N-Body Computation, GPU-
Verify completes its execution in less than ten seconds. More-
over, GPUVerify reports each possible data race within a
barrier interval. On the other hand, GKLEE reports only the
first instance of a data race and terminates execution at that
point.

Unlike GPU Verify, GKLEE is limited to CUDA applica-
tions. Consequently, only benchmarks written using CUDA
which were complete with all the required libraries could

2Data Race
3Barrier Divergence
4GPU Verify exits with error: unhandled exception

[ ] T s

(secs)
6 N-Body Computation 2 2 39.7s
7 PI Estimation 3 0 3.9s
8 MatrixMultiply2 8 0 6.7s
9 Image Blur 0 0 0.7s
10 Pairwise sums timed 4 0 1.6s
11 GPU kmeans 8 0 4.5s
12 Vector Sums 1 0 1.2s
13 Matmul 0 0 1.4s
14 Pairwise sums 4 0 1.7s
15 Cube 1 0 1.1s
16 Square 1 0 1.1s
17 DeadlockO 3 1 1.4s
18 Deadlock?2 0 1 1.3s
19 Seivel 2 0 1.5s

TABLE III. RESULTS: CUDA BENCHMARKS VERIFIED USING

GPUVERIFY

be tested using GKLEE. Moreover, the output of GKLEE
is more detailed and takes time to interpret. Its results can
be categorised into the following categories: Data Races,
Deadlocks (Barrier Divergence), Rate of Memory Coalescing,
Rate of warp divergence and Rate of bank conflicts. The
following table lists the data from our tests.

GKLEE reports the first occurrence of a race condition and
then terminates the program. This can be seen from tables IV
and V . While GPU Verify found multiple data races in several
benchmarks, GKLEE found at most one.

We compared benchmarks 25 and 26, both of which have
the same kernel and compute the sum of two square matrices.
The only difference is that benchmark 25 uses a 1 dimensional
grid while benchmark 26 uses a 2 dimensional one when it
calls the kernel. A major observation here is that GKLEE
times out for benchmark 25. The reason being the size of
the input matrix which is set to 16384, a significantly large
value. The number of threads generated in this benchmark is
directly proportional to the dimensions of the input matrix.
Consequently, the kernel runs on a large number of threads,
leading to a timeout (timeout value was fixed at 80 mins in
these experiments). One can also observe that GKLEE executes
normally for benchmark 26. The kernel is the same but it is
called with different values for the configuration parameters.
The size of the input matrix is set to 16 in this case. This
relation between number of threads and time of execution is
explored further in Graph 5.3 in section IV.

IV. COMPARATIVE ANALYSIS OF GPUVERIFY AND
GKLEE

In this section we compare the two tools on three param-
eters: Bugs reported by the tools, runtimes for benchmarks
tested using both tools (common benchmarks) and variation in
runtime on changing configuration parameters.

SBarrier Divergence, reported as a potential deadlock in GKLEE

%Bank Conflict Rate

"Warp Divergence Rate, with two sub-parts - Warp WDR and Barrier
Interval (BI) WDR

8Memory Coalescing Rate, has two sub-divisions - Warp MCR and Barrier
Interval (BI) MCR

9Timeout set at 80 mins; Benchmark 25 takes 84m17.8 seconds and is
forcefully stopped
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Id | Benchmarks Errors Performance Bugs Time
DR | BD | BCR| WDR | MCR
# |l # % |27 | %®
5 6
10| Pairwise-sums 1 0 0 2,45 100 Im 21.9s
timed
11| GPU kmeans 1 0 0 0, 25 96, 75 1m 33.8s
12| Vector Sums 1 0 0 0 100 Om 0.9s
13| Matmul 1 0 0 50 100 Om 3.7s
14| Pairwise sums 1 0 0 50 100 Om 0.5s
15| Cube 1 0 0 0 100 Om 5.2s
16| Square 1 0 0 0 100 Om 3.4s
17| Deadlock0 0 1 NA | NA NA Om 1.4s
18| Deadlock2 0 1 0 50 100 Om 2.8s
19| Seivel 1 0 0 100 100 Om 6.3s
20| Simple-Error 0 0 0 3, 100 4m 7.2s
Handling 100
21| Interblock race 1 0 0 0 100 Om 0.5s
22| Memory 0 0 0 20 100 Om 48.6s
23| Bank Conflict 0 0 100 | O 100 Om 1.4s
25| SumMatrix-1D Err | Err | Err Err Err Timeout
grid 2D block
26| SumMatrix-2D 0 0 0 100 100 Im15.8s
grid 2D block

TABLE TV. RESULTS: BENCHMARKS VERIFIED USING GKLEE

A. Difference in bugs reported

The two bugs that both GPUVerify and GKLEE report are
data races and barrier divergence. However, due to the different
methodology they follow, the tools provide differing results
when tested on the same benchmarks. During the tests, data
races were detected in nine of the ten common benchmarks.
A comparative analysis of GPUVerify and GKLEE for the ten
benchmarks that were tested using both the tools is included
in Table V.

Id Benchmark Data Remarks
Races #
GPU GKLEE
Verify
10 Pairwise sums 4 1 GKLEE exits after first data race is
timed detected
11 GPU Kmeans 8 1 GKLEE exits after first data race is
detected
12 Vector sums 1 1 Data races occurs only if kernel is called
with multiple threads
13 Matmul 0 1 GKLEE reports a benign data race
14 Pairwise sums 4 1 GKLEE exits after first data race is
detected
15 Cube 1 1 Data race occurs only if kernel is called
with multiple threads
16 Square 1 1 Data race occurs only if kernel is called
with multiple threads
17 DeadlockO 3 0 GKLEE exits after reporting a potential
deadlock (barrier divergence)
18 Deadlock?2 0 Neither tool reports any data races
19 Seivel 2 1 GKLEE exits after first data race is
detected
TABLE V. COMPARATIVE ANALYSIS OF DATA RACES REPORTED BY

GPUVERIFY AND GKLEE

Among the kernels that were tested, both tools report the
same results for barrier divergence. GKLEE reports it as a
potential deadlock whereas GPU Verify states that the barrier
may be reached by non-uniform control flow.

B. Analysis of execution time

The two chosen software, GPUVerify and GKLEE, were
compared for three factors:

1)  Runtimes for the benchmarks that were tested using
both tools (common benchmarks)

2)  Variation in runtime with respect to length of code
for common benchmarks

3)  Variation in runtime for a single benchmark (Pairwise
sums) when number of threads per block are in-
creased while keeping the number of blocks constant

Figure 5.1 compares the runtimes of GPUVerify and
GKLEE for eight of the ten common benchmarks. As can
be seen, GKLEE takes more time to complete its analysis
than GPUVerify for five of the eight benchmarks. For
one benchmark, the runtimes of both tools are equal. The
remaining two benchmarks, pairwise sums timed and GPU
kmeans, were not included as the runtimes of GKLEE were
too large to be represented in the same graph. For these
benchmarks, the difference in runtime was even greater, as
can be observed from III and IV.

Figure 5.2 depicts the variation in runtime with respect
to the length of the code for seven of the ten common
benchmarks. It must be noted that for such a small sample of
relatively small CUDA kernels, we cannot make generalised
conclusions from the trends we observe in this graph. However,
what can be said is that the runtime of GKLEE varies signifi-
cantly with respect to the length of the program. Contrastingly,
the runtime of GPUVerify remains almost constant for the
chosen benchmarks.

Figure 5.3 plots the variation in runtime of both
tools when the configuration parameters, namely the num-
ber of blocks and number of threads per block are
changed. The graph has a logarithmic scale with the x-axis
showing the logs[ThreadsPerBlock] and y-axis showing
logip|Runtime(seconds)]. In this experiment we hold the
number of blocks in the grid to an constant value of two while
varying the number of threads from 1 to 128 in the increasing
powers of 2 i.e. the number of threads are 1, 2, 4, 8, 16, 32,
64 and 128 in the seven cases respectively. The experiment
was conducted only on one benchmark, namely Pairwise sums.
It can be observed that the runtime of GPUVerify remains
constant while the runtime of GKLEE increases linearly on
the logarithmic scale.

Figure 5.1: Comparison of runtimes for common benchmarks

6, |

Runtime (Seconds)

| el Ll

I I I I I I I I I
12 13 14 15 16 17 18 19
|08 GPUVerify 0 GKLEE |
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Figure 5.2: Variation in runtime with length of code
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Figure 5.3: Comparison of runtime for Pairwise Sums
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V. CONCLUSION
The following are the major conclusions of our research.

Scope of the software: GPU Verify detects all potential
data races and diverging barriers in one barrier interval and it
covers OpenCl and CUDA applications. On the other hand,
GKLEE also reports bank conflicts, warp divergence and
memory coalescing rates. It reports the first instance of data
race or barrier divergence and then terminates. GPUVerify
analyses kernels in isolation while GKLEE can test an entire
application.

Portability, Learnability and Usability issues: GPUVer-
ify is more portable than GKLEE since it requires libraries
that are easy to install, has fewer system dependencies and
almost no dependency on the version of OS used. It is easier
to run and the documentation and supporting literature on
GPU Verity is adequate to resolve most issues faced during
testing. Comparatively, the GKLEE Github repository provides
less documentation. Moreover, the output of GPUVerify is
simple and easy to interpret while the results generated by
GKLEE are relatively complicated and detailed as it addresses
many more aspects of the application than GPU Verity.

Error-free termination and execution time: Both tools
terminate for almost all the benchmarks, with a few notable
exceptions. In general, the execution time of GKLEE increases
linearly with the values of the configuration parameters as ob-
served from Graph 5.3. Also, GKLEE takes longer to execute
than GPUVerify for seven of the ten common benchmarks,
as can be seen from graph 5.1 and tables III and IV. Unlike
GPU Verity, the runtime of GKLEE varies with the length of
the code, although no co-relation can be asserted. GPU Verify

takes almost the same time for testing kernels that vary in
length. This can be observed from graph 5.2.

Recommendations for usage: Based on our analysis,
GPU Verity is best suited to be used during the initial and in-
termediate phases of developing an application while GKLEE
can be used to test the entire application and gauge its real
performance in the final phases of software development.

We can conclude that both GPUVerify and GKLEE provide
much needed and useful mechanisms to detect programming
bugs such as data races and barrier divergence. GKLEE
also reports potential performance issues in the program by
conducting a concolic analysis. There is potential for improve-
ments with regards to usability and learn-ability aspects of both
tools, especially for GKLEE.

VI. FUTURE WORK

In the future, we would be categorising benchmarks by the
nature of computations such as floating point calculations and
nested loops or third party libraries used by the kernels. In this
way, we can study the performance of these tools with respect
to qualitative aspects of applications. Secondly, we will also
look at the possibility of false positives and negatives reported.
These issues can reduce the reliability of these tools and must
be analysed in greater depth.
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